

CMS JetMet Meeting

HCAL JET MET

Missing Et status

Pál Hidas RMKI Budapest

Content

HCAL JET MET

- High luminosity L1 & L2.0 rates
 - cmsim bug is cured by Salavat's filter
- Rates @ 95% efficiencient cuts
- Study of Et flow
 - Effect of magnetic field

High lumi L1 & L2.0 rates

HCAL JET MET

Rates look good with Salavat's filter (E<999 GeV genparts) Missing statistics between 100 and 150 GeV

1 kHz threshold - L1 ~ 125 GeV, L2 ~ 130 GeV

95% efficient cut

HCAL JET MET

L2 performs much better than L1 for high MET for the signal too

Rate at 95% efficient cut

HCAL JET MET

L2 performs much better than L1 for high MET

Low lumi rates

HCAL JET MET

Rates look good with Salavat's filter (E<999 GeV genparts) Missing statistics between 100 and 150 GeV

1 Hz threshold – L1 : ~150 GeV, L2 : ~140 GeV L2 < L1 !

1 kHz threshold -L1: ~80 GeV, L2: ~85 GeV

Corrected low lumi rate

HCAL JET MET

"type 2 correction" (Sasha)
corrected jets + out-of-cone
towers
old low lumi correction

statistics hole is more apparent

95% efficient cut

HCAL JET MET

L2 performs much better than L1 for high MET

Rate at 95% efficient cut

HCAL JET MET

L2 performs much better than L1 for high MET

Slight improvement with L2.2 (corrected jets + out-of-cone towers) it is a tau jet signal - correction overreconstructs the tau jets

0.2 0.1

ECAL part of pile-up Et

HCAL JET MET

Significant drop (50 %)at the barrelendcap boundary (~1.5)

- Low Et tracks go from the barrel to the endcap(?)
- They are mostly charged pions

High lumi has more EM part at 0

- Very soft part is of more photons(?)
- More chance to reach the tower threshold at high lumi (?)

There must be an excess of Et in the endcap and the HF then

-2

0

2

Gen&Calo Et flow(high lumi)

HCAL JET MET

The curves

- Offline tower Et flow
- Stable generated particles (rescaled by pile-up)
- Stable genpart without charged hadrons of Et < 1 GeV that can not reach the barrel

Study is not fine tuned

- Tower threshold (0.5 GeV now)
- Noise
- Pile-up

Summary

HCAL JET MET

The HF (cmsim) bug is cured by Salavat's filter

- L2 performs better than L1 for MET > ~ 80 GeV
- L1 thresholds (1 kHz) low lumi :80 GeV, high lumi : 125 GeV
- L2 thresholds (1 Hz) low lumi:140 GeV, high lumi:170 GeV

Effect of magnetic field

- Diverts energy from barrel to endcap
- According to my Dec2000 fast MC studies it has minor effect on MET with respect to energy measurment resolution and nonlinearity